State-of-the-art language models are often accurate on many question-answering benchmarks with well-defined questions. Yet, in real settings questions are often unanswerable without asking the user for clarifying information. We show that current SotA models often do not ask the user for clarification when presented with imprecise questions and instead provide incorrect answers or "hallucinate". To address this, we introduce CLAM, a framework that first uses the model to detect ambiguous questions, and if an ambiguous question is detected, prompts the model to ask the user for clarification. Furthermore, we show how to construct a scalable and cost-effective automatic evaluation protocol using an oracle language model with privileged information to provide clarifying information. We show that our method achieves a 20.15 percentage point accuracy improvement over SotA on a novel ambiguous question-answering answering data set derived from TriviaQA.
translated by 谷歌翻译
We investigate the efficacy of treating all the parameters in a Bayesian neural network stochastically and find compelling theoretical and empirical evidence that this standard construction may be unnecessary. To this end, we prove that expressive predictive distributions require only small amounts of stochasticity. In particular, partially stochastic networks with only $n$ stochastic biases are universal probabilistic predictors for $n$-dimensional predictive problems. In empirical investigations, we find no systematic benefit of full stochasticity across four different inference modalities and eight datasets; partially stochastic networks can match and sometimes even outperform fully stochastic networks, despite their reduced memory costs.
translated by 谷歌翻译
Bayesian inference has theoretical attractions as a principled framework for reasoning about beliefs. However, the motivations of Bayesian inference which claim it to be the only 'rational' kind of reasoning do not apply in practice. They create a binary split in which all approximate inference is equally 'irrational'. Instead, we should ask ourselves how to define a spectrum of more- and less-rational reasoning that explains why we might prefer one Bayesian approximation to another. I explore approximate inference in Bayesian neural networks and consider the unintended interactions between the probabilistic model, approximating distribution, optimization algorithm, and dataset. The complexity of these interactions highlights the difficulty of any strategy for evaluating Bayesian approximations which focuses entirely on the method, outside the context of specific datasets and decision-problems. For given applications, the expected utility of the approximate posterior can measure inference quality. To assess a model's ability to incorporate different parts of the Bayesian framework we can identify desirable characteristic behaviours of Bayesian reasoning and pick decision-problems that make heavy use of those behaviours. Here, we use continual learning (testing the ability to update sequentially) and active learning (testing the ability to represent credence). But existing continual and active learning set-ups pose challenges that have nothing to do with posterior quality which can distort their ability to evaluate Bayesian approximations. These unrelated challenges can be removed or reduced, allowing better evaluation of approximate inference methods.
translated by 谷歌翻译
药物的因果模型已用于分析机器学习系统的安全性方面。但是,识别代理是非平凡的 - 通常只是由建模者假设而没有太多理由来实现因果模型 - 建模失败可能会导致安全分析中的错误。本文提出了对代理商的第一个正式因果定义 - 大约是代理人是制度,如果他们的行为以不同的方式影响世界,则可以改善其政策。由此,我们得出了第一个用于从经验数据中发现代理的因果发现算法,并提供了用于在因果模型和游戏理论影响图之间转换的算法。我们通过解决不正确的因果模型引起的一些混乱来证明我们的方法。
translated by 谷歌翻译
对网络规模数据进行培训可能需要几个月的时间。但是,在已经学习或不可学习的冗余和嘈杂点上浪费了很多计算和时间。为了加速训练,我们引入了可减少的持有损失选择(Rho-loss),这是一种简单但原则上的技术,它大致选择了这些训练点,最大程度地减少了模型的概括损失。结果,Rho-loss减轻了现有数据选择方法的弱点:优化文献中的技术通常选择“硬损失”(例如,高损失),但是这种点通常是嘈杂的(不可学习)或更少的任务与任务相关。相反,课程学习优先考虑“简单”的积分,但是一旦学习,就不必对这些要点进行培训。相比之下,Rho-Loss选择了可以学习的点,值得学习的,尚未学习。与先前的艺术相比,Rho-loss火车的步骤要少得多,可以提高准确性,并加快对广泛的数据集,超参数和体系结构(MLP,CNNS和BERT)的培训。在大型Web绑带图像数据集服装1M上,与统一的数据改组相比,步骤少18倍,最终精度的速度少2%。
translated by 谷歌翻译
我们介绍了Goldilocks Selection,这是一种用于更快的模型训练的技术,该技术选择了一系列“恰到好处”的训练点。我们提出了一个信息理论采集函数 - 可还原验证损失 - 并使用小的代理模型-GoldiProx进行计算,以有效地选择培训点,以最大程度地提高有关验证集的信息。我们表明,通常在优化文献中选择的“硬”(例如高损失)点通常是嘈杂的,而“简单”(例如低噪声)样本通常优先考虑课程学习提供更少的信息。此外,具有不确定标签的点(通常是由主动学习的目标)往往与任务相关。相比之下,Goldilocks选择选择了“恰到好处”的点,并且从经验上优于上述方法。此外,选定的序列可以转移到其他体系结构。从业者可以共享并重复使用它,而无需重新创建它。
translated by 谷歌翻译
对不确定度和鲁棒性的高质量估计对于众多现实世界的应用来说至关重要,特别是对于深入学习,这是利用许多部署的ML系统。因此,比较改善这些估计的技术的能力对于研究和实践相似非常重要。然而,由于一系列原因,通常缺乏方法的竞争比较,包括:计算广泛调整的可用性,加入足够多的基线,以及用于再现性的具体文件。在本文中,我们介绍了不确定性的基线:在各种任务中的标准和最先进的深度学习方法的高质量实现。从本撰写中,集合跨越9项方法,每个方法都有至少5个度量。每个基线都是一个独立的实验管道,易于可重复使用和可伸缩的部件。我们的目标是提供具有新方法或应用的实验的即时出发点。此外,我们还提供模型检查点,实验输出为Python笔记本,以及用于比较结果的排行榜。代码在https://github.com/google/uncertainty-baselines。
translated by 谷歌翻译
Logic Mill is a scalable and openly accessible software system that identifies semantically similar documents within either one domain-specific corpus or multi-domain corpora. It uses advanced Natural Language Processing (NLP) techniques to generate numerical representations of documents. Currently it leverages a large pre-trained language model to generate these document representations. The system focuses on scientific publications and patent documents and contains more than 200 million documents. It is easily accessible via a simple Application Programming Interface (API) or via a web interface. Moreover, it is continuously being updated and can be extended to text corpora from other domains. We see this system as a general-purpose tool for future research applications in the social sciences and other domains.
translated by 谷歌翻译
The analysis of network structure is essential to many scientific areas, ranging from biology to sociology. As the computational task of clustering these networks into partitions, i.e., solving the community detection problem, is generally NP-hard, heuristic solutions are indispensable. The exploration of expedient heuristics has led to the development of particularly promising approaches in the emerging technology of quantum computing. Motivated by the substantial hardware demands for all established quantum community detection approaches, we introduce a novel QUBO based approach that only needs number-of-nodes many qubits and is represented by a QUBO-matrix as sparse as the input graph's adjacency matrix. The substantial improvement on the sparsity of the QUBO-matrix, which is typically very dense in related work, is achieved through the novel concept of separation-nodes. Instead of assigning every node to a community directly, this approach relies on the identification of a separation-node set, which -- upon its removal from the graph -- yields a set of connected components, representing the core components of the communities. Employing a greedy heuristic to assign the nodes from the separation-node sets to the identified community cores, subsequent experimental results yield a proof of concept. This work hence displays a promising approach to NISQ ready quantum community detection, catalyzing the application of quantum computers for the network structure analysis of large scale, real world problem instances.
translated by 谷歌翻译
The following article presents a memetic algorithm with applying deep reinforcement learning (DRL) for solving practically oriented dual resource constrained flexible job shop scheduling problems (DRC-FJSSP). In recent years, there has been extensive research on DRL techniques, but without considering realistic, flexible and human-centered shopfloors. A research gap can be identified in the context of make-to-order oriented discontinuous manufacturing as it is often represented in medium-size companies with high service levels. From practical industry projects in this domain, we recognize requirements to depict flexible machines, human workers and capabilities, setup and processing operations, material arrival times, complex job paths with parallel tasks for bill of material (BOM) manufacturing, sequence-depended setup times and (partially) automated tasks. On the other hand, intensive research has been done on metaheuristics in the context of DRC-FJSSP. However, there is a lack of suitable and generic scheduling methods that can be holistically applied in sociotechnical production and assembly processes. In this paper, we first formulate an extended DRC-FJSSP induced by the practical requirements mentioned. Then we present our proposed hybrid framework with parallel computing for multicriteria optimization. Through numerical experiments with real-world data, we confirm that the framework generates feasible schedules efficiently and reliably. Utilizing DRL instead of random operations leads to better results and outperforms traditional approaches.
translated by 谷歌翻译